XCVB: Improving Modularity for Common Lisp

Francois-René Rideau

ITA Software, Inc.
fare@tunes.org

Abstract

We present XCVB, a new open source system to build Common
Lisp software. XCVB notably features separate compilation. This
departs from the Common Lisp tradition of compiling within a live
world. But separate compilation scales to very large systems, and
opens many possibilities for the future.

1. Introduction

Despite plenty of advanced module systems having been imple-
mented in various Lisp dialects (and languages from other fami-
lies) in the last 25 years, the current state of the art for the Common
Lisp community hasn’t improved much since 1980: a central file
defines the build graph, and components are compiled and loaded
as successive side effects to the current Lisp world.

Our insight is to break the classic Lisp assumption of program-
ming in a single concrete Lisp world that is side-effected as source
code is sequentially compiled then loaded. Instead, we propose
a pure-functional approach of building encapsulated components,
each compiled in its own isolated virtual Lisp world.

The traditional Lisp model may have been ahead of its time in
the 1970s and valid into the 1980s, when memory and virtualization
were expensive. But it doesn’t scale well to programming in the
large in the 2000s, with projects of tens of programmers with
hundreds of files, where the side-effects of processing various files
may interact in unexpected ways. Our model, which is traditional
for many other languages (like OCaml), does scale to large projects
and allows a concurrent and distributed build.

2. Past Common Lisp build systems

In the original DEFSYSTEM (Weinreb and Moon||1981) and its
descendents, a “system” is defined in a central file as an acyclic
graph of components to be compiled and loaded into the current
Lisp world, arcs being dependencies.

The original DEFSYSTEM and its once-popular portable de-
scendent MK:DEFSYSTEM (from 1990 on) required one to man-
ually list all transitive dependencies of a component in a statement
separate from its definition (see figure [T). The current state of the
art and most popular descendent of DEFSYSTEM, ASDF (Barlow
and contributors|2004), simplifies things tremendously by automat-
ically computing the transitive closure of directly declared depen-
dencies from single statements defining both both component and

Spencer Brody

Brown University
sbrody88@gmail.com

(:module BAR ("BAR"))

(:compile-load BAR
(PACKAGES MACROS SPECIALS)
(:fasload PACKAGES MACROS SPECIALS))

Figure 1. Using DEFSYSTEM: component bar is defined in two
places in system file foo.system — all transitive dependencies
have to be listed explicitly.

(:file "bar" :depends-on ("macros" "specials"))

Figure 2. Using ASDF: component bar is defined somewhere in
system file foo.asd — transitive dependency on packages may be
skipped.

#+xcvb
(module
(:depends-on ("macros" "specials")))

Figure 3. Using XCVB: component bar is defined on top of mod-
ule file bar . 1isp — transitive dependency on packages is implicit.

direct dependencies (see figure [2). Such improvements and more
had been suggested as early as 1984 (Pitman|1984; Robbins|[1985)
but not available as a portable package until ASDF was created in
2001. ASDF also features some limited form of extensibility using
CLOS; but for the purpose of this presentation, we will focus on
the core architecture of the build system. Another DEFSYSTEM
variant, mudballs, was recently created, that seems to cleanup and
simplify ASDF while keeping the same general architecture.

3. XCVB

XCVB, the eXtensible Component Verifier and Builder, is a new
open source system to build software written in Common Lisp.

XCVB most notably features separate compilation in isolated
Lisp worlds. The current implementation spawns a new Lisp pro-
cess for each compilation. In XCVB, dependency information is
not declared in a central file, but at the top of each component file
(see figure[3).

In the following bullet-point presentation, we briefly outline the
reasons why separate compilation is important, though it requires
a break from the traditional Common Lisp model. We describe the
state of the project and the benefits at hand. We suggest the many
future benefits that can be enabled by this design, and we discuss
the challenges that will have to be overcome to achieve some of
those benefits.

4. XCVB yesterday
What the XCVB prototype already brings as compared to ASDF.

4.1 Goal: Separate Compilation
¢ Independent compilation of individual files.
e Compute objects from source, just as in any modern language.

e Proper staging of compile-time dependencies (macros compiled
before they are used).

e Semantics of a file fully encapsulated in its contents (+ contents
of dependencies).

e Incremental change-driven building and testing.

4.2 Therefore: Dependencies must be declared locally
e Move dependencies away from centralized off-file meta-data.
e Module import statement, just as in any modern language.

e No more global recompilation (or subtle failure) at the least
change in centralized system definition.

e No more subtle bugs due to non-local change in ordering of
compile-time side-effects (see figure).

e Unlike ASDF, can incrementally track dependencies across sys-
tems.

4.3 Eager enforcement of dependencies
e Build each file in a world loaded with none but its dependencies.
e Requires import discipline, just as in any modern language.

e A bit slower, but much more robust: dependency bugs are de-
tected early (as opposed to figure).

e No more unmaintainable large manual dependency graphs (or
rigid unmaintained serial lists of files as a workaround).

e Allows correct incremental unit tests based on what has changed
(beware: tests that use reflection).

4.4 Current build backends

e XCVB computes the build graph, currently lets other software
do the build.

e Makefile: integrate into a larger build, just as in any modern
language.

e ASDF: integrate into legacy ASDF builds.

e More backends possible in the future: 0Make (Hickey and No-
2in|[2000); take over your build.

4.5 Decoupling builder and buildee

e Protection from uncontrolled side-effects from buildee to builder.

e Allows for integration with make as mentioned above.

o Allows for cross-compilation from one compiler/architecture to
a different one.

e Allows for a feature-rich build system that needn’t fit in one
small file, yet.

e Allows builder to rebuild and test its dependencies and self.

4.6 Can use CFASL:s to capture COMPILE-TIME
side-effects

e Vast speed improvement, fewer rebuilds (the FASL may have
changed yet the CFASL stay the same).

e Like C++ precompiled headers, except automatically deduced
from the code.

Step 1: Initially working system.

;; bar provides base for baz
(:file "bar" :depends-on ("base"))

;3 quux unrelatedly depends on base
(:file "quux" :depends-on ("base"))

;; baz also depends on base,
;; transitively provided by bar
(:file "baz" :depends-on ("bar"))

Step 2: after refactoring, bar is simplified to not need base

;; bar no longer depends on base
(:file "bar" :depends-on ("packages"))

;3 quux happens to load base
;; before baz is compiled
(:file "quux" :depends-on ("base"))

;; baz really depends on base
;; but the missing dependency is not detected
(:file "baz" :depends-on ("bar"))

Step 3: quux is also refactored to not need base. Now compilation
of unrelated file baz breaks because its implicit dependency base
is not loaded anymore.

;; bar still does not depend on base
(:file "bar" :depends-on ("packages"))

;3 quux no longer loads base
(:file "quux" :depends-on ("packages"))

;; despite a lack of related modifications,
;; baz now breaks inexplicably

;; at next clean compilation

(:file "baz" :depends-on ("bar"))

The lines that matter need not be consecutive but may be sepa-
rated arbitrarily. The missing dependency may not be a direct de-
pendency, but any transitive dependency. Steps 2 and 3 may be sep-
arated by a lot of unrelated changes. Also, they need not be done
by the same person, rewarding the culprit, punishing the innocent,
encouraging sloppiness and discouraging refactoring.

Figure 4. Break down of ASDF: a mistake at step 2 creates a
timebomb that is only triggered by an innocent change much later.

e Was easily added to SBCL by Juho Snellman, could be as easily
added to other compilers.

e Careful eval-when discipline required (as with ASDF really,
but now it is enforced).
4.7 Automated migration path from ASDF

e XCVB accepts dependencies from XCVB systems to ASDF
systems and vice-versa.

e Automatic migration of your ASDF system using Andreas
Fuchs’s asdf-dependency-grovel.

e Compile-time Lisp state requires extending the dependency-
detection tool.

e ASDF extensions will require according XCVB extensions.

5. XCVB today
Urgently needed.

5.1 User friendliness
e Add documentation and examples.

e Better behavior in face of errors.

5.2 More features
e Combine multiple projects, find them using a search path.

e Refine migration and compilation to deal with harder cases
(data files read at compile-time, computed lisp files, etc.).

e Have a more general model for staged builds (multiple interme-
diate images, dynamic dependency computation).
5.3 Actually migrate a critical mass of existing ASDF systems
e Support manual overrides when automation breaks down.

e Maintain until upstream adopts XCVB (if ever) — automated
migration makes that possible.

¢ Provide a distribution system (as in asdf-install, mudballs
or clbuild, etc.).

e Fully bootstrap XCVB (make ASDF optional).

5.4 Refactor Internals

e Current implementation was a good first attempt, but needs to
be reworked.

e Needs to be made more general to allow for desired and future
features.

e Recognize hand-coded patterns, read literature, formalize a do-
main, grow a language.

6. XCVB tomorrow

The following improvements are enabled by XCVB’s deterministic
separate compilation model.

6.1 Distributed backends
e Pluggable distributed compilation (distcc for CL).
e Take over the build, make it distributed with Erlang-in-Lisp.
e Requires compiler support to preserve source locations for de-
bugging.
6.2 Caching
e Cache objects rather than rebuild (ccache for CL).

e Base cache on crypto hash fully capturing the computation and
its dependencies.

e Can track all the modified dependencies since last success at
building and verifying a component.

e Push for more determinism in Lisp compilers!

6.3 Dependency management

e xcvb-dependency-check to detect superfluous dependencies
(to be based on asdf-dependency-grovel).

e Cache above results to suggest missing dependencies.
e Actually implement dependency-based testing.

e Integrate test dependency tracking with code-coverage tools.

6.4 Extend the build Specification Language

e Build rules that call arbitrary programs (as in a Makefile).

e Computed source files, including from parametrized computa-
tions.

e Dependency on arbitrary computed features, only compiled
once.

e Automated finalization and verification of modules.

6.5 Manage reader extensions, alternate grammars, hygienic
macros, etc.

e Made possible and convenient by separate compilation.
e No pollution of compile-time environment from other modules.

e Everyone can use whatever fits his purposes, with well-defined
semantics.

e Requires compiler support to preserve source locations for de-
bugging.
6.6 Layer namespace management on top of it
e Automate evolution of defpackage forms.

e More sensible replacement for packages (lexicons? modules as
in PLT Scheme?).

e Higher-order parametric components (PLT Scheme units).

e Many levels of static typing with interface that enforces implicit
contracts, etc.

e Generally, make CL competitive again wrt access to latest im-
provements from research.

6.7 Abstract away the execution model

e Semantics: proper tail calls? continuations? serializable state?
etc.

e Performance: debuggability? optimization levels?
e A file can require some of the above settings.

e A same module can be compiled according to many combina-
tions of them.

7. Need for extensions to the CL standard

Short of reimplementing all of CL in a translation layer, some of the
above features cannot be implemented on top of standard CL: they
require access to functionality below the standardized abstraction
barrier of a CL implementation.

7.1 Access to system functions
e open, fork, exec, sockets, etc. — happily we have CFFI, IOLib.
¢ nothing specific to XCVB here, but still (sadly) deserves men-
tioning.
7.2 Encapsulation of COMPILE-TIME side-effects
e CFASL only in SBCL for now.

¢ slow loading “FAS”L can make do if you can cope with inter-
mixing LOAD-TIME side-effects.
7.3 Encapsulation of LOAD-TIME partial state, not
side-effects

e FASL is still too slow to load, cannot be shared between bina-
ries.

e SB-HEAPDUMP can be mmap()ed — but isn’t even standard feature
of SBCL.

7.4 Programmable access to debugging meta-information

e Syntax extension requires support for recording source loca-
tions.

e Semantic layering is a challenge for single-stepping, access to
high-level view of the state.

e Support multiple evaluation models in a given running environ-
ment.

7.5 PCLSRing

Generalizing PCLSRing (Bawden||1989), when interrupting, in-
specting or single-stepping a program in a higher-level language,
you don’t want to handle intermediate states of the low-level im-
plementation, but safe points with a meaningful high-level inter-
pretation.

e Needed for transactionality in single-stepped and/or concurrent
evaluation.

e Challenge: a good meta-level protocol for users to define
PCLSRing for arbitrary semantic layers.

e With such a tool, all the system can be implemented with first-
class translation layers.

8. Conclusion

XCVB is nothing fancy — just elaborate plumbing. The ideas within
are mostly well-known; each but the most prospective of them are
already implemented in many build or module systems for other
languages. Yet the bulk of the work is still ahead for XCVB. That’s
how far behind Common Lisp is with respect to modularity.

The deep rationale for XCVB is a social concern: minimizing
programmer-side cognitive burden in combining modules. Techni-
cal and social aspects are tied in obvious ways, yet most people
wilfully ignore at least one of the two aspects.

XCVB was initially developed by Spencer Brody during the
Summer 2008 at ITA Software, under the guidance of Francois-
René Rideau. Rideau briefly worked on it in mid December 2008
to release and document a usable prototype.

Our hope is that by the time the conference happens, we will
have already deployed XCVB on a large system, and moved some
points from “XCVB today” into “XCVB yesterday”. However as
of this writing, this hasn’t happened yet.

XCVB code and documentation can be found at:

http://common-lisp.net/projects/xcvb/

Acknowledgments

This presentation describes work done at ITA Software, Inc.
Many thanks to James Knight for the essential insights.
Thanks to Juho Snellman for CFASL support in SBCL.

References

Daniel Barlow and contributors. ASDF Manual, 2004. URL http://
common-1lisp.net/project/asdf/.

Alan Bawden. PCLSRing: Keeping Process State Modular. Technical
report, MIT, 1989. URL http://fare.tunes.org/tmp/emergent/
pclsr.htm.

Jason Hickey and Aleksey Nogin. OMake: Designing a scalable build
process. In Fundamental Approaches to Software Engineering, 9th
International Conference, FASE 2006, pages 63—78. Springer, 2006.

Kent Pitman. The Description of Large Systems. MIT Al Memo 801,
September 1984. URL http://www.nhplace.com/kent/Papers/
Large-Systems.html,

Richard Elliot Robbins. BUILD: A Tool for Maintaining Consistency
in Modular Systems. MIT AI TR 874, November 1985. URL
ftp://publications.ai.mit.edu/ai-publications/pdf/
AITR-874.pdf.

Dan Weinreb and David Moon. Lisp Machine Manual, 1981.

http://common-lisp.net/projects/xcvb/
http://common-lisp.net/project/asdf/
http://common-lisp.net/project/asdf/
http://fare.tunes.org/tmp/emergent/pclsr.htm
http://fare.tunes.org/tmp/emergent/pclsr.htm
http://www.nhplace.com/kent/Papers/Large-Systems.html
http://www.nhplace.com/kent/Papers/Large-Systems.html
ftp://publications.ai.mit.edu/ai-publications/pdf/AITR-874.pdf
ftp://publications.ai.mit.edu/ai-publications/pdf/AITR-874.pdf

	Introduction
	Past Common Lisp build systems
	XCVB
	XCVB yesterday
	Goal: Separate Compilation
	Therefore: Dependencies must be declared locally
	Eager enforcement of dependencies
	Current build backends
	Decoupling builder and buildee
	Can use CFASLs to capture COMPILE-TIME side-effects
	Automated migration path from ASDF

	XCVB today
	User friendliness
	More features
	Actually migrate a critical mass of existing ASDF systems
	Refactor Internals

	XCVB tomorrow
	Distributed backends
	Caching
	Dependency management
	Extend the build Specification Language
	Manage reader extensions, alternate grammars, hygienic macros, etc.
	Layer namespace management on top of it
	Abstract away the execution model

	Need for extensions to the CL standard
	Access to system functions
	Encapsulation of COMPILE-TIME side-effects
	Encapsulation of LOAD-TIME partial state, not side-effects
	Programmable access to debugging meta-information
	PCLSRing

	Conclusion

